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1 Motivation and Objectives

One of the most promising techniques for the prediction of turbulent flows is Large Eddy Simu-
lation (LES), in which the largest scales of turbulent fluid motion are simulated while the effect
of the smaller unresolved scales are modeled. However, one of the major obstacles to the use of
LES in technologically important turbulent flows, such as the flow over an airfoil, is the modeling
of the near-wall turbulence. Current LES modeling approaches require that either the near-wall
turbulence be adequately resolved (at unacceptable expense for large Reynolds numbers), or that
an LES wall-model be used, which to date has not provided accurate results in relatively complex
flows (e.g. an airfoil near stall).

A new modeling approach for wall-bounded turbulence has been developed, which promises to
address the wall-modeling problem described above. It is based on a formal filtering of the tur-
bulenceand the boundary, a determination of the wall stress to minimize the “leakage” of kinetic
energy and momentum from the flow domain, and the use of the optimal LES formulation. These
three ingredients have been shown to produce accurate LES results in a turbulent channel. Further,
each of these modeling formulations is generally applicable, so they can be expected to provide
a basis for successful wall modeling in more complex flow situations, such as the flow over an
airfoil.

The objective of this research was thus to further refine and validate this wall-modeling approach,
and ultimately apply it to the flow over an airfoil. To accomplish this, we pursued a number of
intermediate objectives:

• Completion and testing of the optimal LES (OLES) )finite volume formulation using only
theoretical inputs. Such theory-based OLES is necessary so that the models will be predictive
(i.e. will not need empirical inputs).

• Refinement and generalization of an approximation of the multi-point correlations in wall-
bounded turbulence. A formulation for the anisotropy and inhomogeneity of the correlations
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is needed to apply the theoretical formulation described above for strongly inhomogeneous
turbulence as occurs nears walls.

• Generalization of the wall-bounded formulation used in [6] to the finite volume OLES for-
mulation, which is appropriate for use in general geometries.

• Application of the above OLES generalizations to general wall-bounded flows.

2 Background and Approach

It is well known that our ability to predict complex fluid flows is limited by the need to model
the effects of turbulence. For example, Reynolds averaged (RANS) turbulence models have dif-
ficulties in flows exhibiting large separation and vortex shedding. Thus, in the technologically
critical problem of flow over an airfoil, there remains a great need to improve turbulence predictive
techniques, especially at large angle of attack. Large eddy simulation (LES) is increasingly being
employed to avoid the weaknesses of RANS models, and to provide more information than RANS
computations are able to provide (e.g. for aeroacoustic phenomena or unsteady forces). However,
LES remains prohibitively expensive for high Reynolds number applications, including airfoils,
largely due to the treatment of walls [31, 23].

Recently, a European consortium undertook to evaluate current capabilities of LES for application
to airfoils [23]. A high lift airfoil at angle of attack sufficient to produce a mild separation on
the suction side toward the trailing edge was simulated by a variety of groups, using an array of
different LES modeling techniques. In this study, it was found that with current LES techniques, it
was necessary to resolve the near-wall turbulence to obtain accurate results. LES performed with
wall function representations of the near-wall region were not satisfactory.

The cost implications of resolving the near wall layer are severe, with classical estimates for sim-
ulating the boundary layer (as on an airfoil) in LES yielding costs that scale withRe0.5

c if the
near-wall layer is not resolved, versusRe2.4

c if the near-wall layer must be resolved, as suggested
above [34, 10]. The reason for the difference is that resolution of the near-wall layer requires grid
sizes that scale with the viscous wall unit (ν/uτ , whereuτ is the friction velocity, defined in terms
of the mean wall shear stressu2

τ = τw/ρ), which get small relative to the boundary layer thick-
ness approximately likeRe−1. As a result, such wall-resolving LES have only been performed for
airfoils at moderate Reynolds numbers, with very narrow spanwise domains. For example, [22]
used a spanwise domain size of just 1.2% of chord to simulate the A-Airfoil from Aérospatiale at
a chord Reynolds number of2.1 × 106. Wall-resolved LES of an actual three dimensional wing is
currently out of the question.

It is clear that an LES wall modeling approach is needed that does not require the resolution of
the near-wall layer, and a number of research efforts have been directed at this problem, with only
limited success. For an account of these efforts, see the recent review by [31], as well as several
more recent papers [41, 37] The approaches generally pose stress boundary conditions for the LES
equations, and a number of modeling approaches to determine the required boundary stresses have
been developed. These include the correlation of the wall stresses with large-scale velocities in the
interior [32], a boundary layer representation of the wall layer [41] and the use of optimal control
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to ensure that known statistical properties of the turbulence are reproduced [37, 27].

Under a previous AFOSR/NSF jointly funded project, a new approach to the wall-modeling prob-
lem was shown to yield remarkably good results in turbulent channel flow [11, 25]. This approach
is based on the observation that in an LES, it is not consistent to identify the location of anything,
including a no-slip boundary, to more accuracy than the filter width, suggesting that the wall should
be filtered as well as the turbulence in the interior. This approach provides a formal basis for the
introduction of the wall stress in the LES equations, and by including the region exterior to the flow
domain in the computation, it allows the wall stresses to be determined by ensuring that momen-
tum and energy do not “leak” from the flow domain. This simple and very general modeling ansatz
appears to be sufficient to provide LES boundary conditions.

However, even with an accurate representation of wall stresses, a model is needed for the subgrid
effects in the flow domain interior that is valid near the wall (in the log layer), where the assump-
tions of small scale isotropy and scale similarity, on which most subgrid models are based, are not
valid. Fortunately, the optimal LES approach pursued over the years in our group is valid even in
the absence of small-scale isotropy and scale similarity. Optimal LES models were used in con-
junction with the filtered boundary/no leakage boundary model, to produce the encouraging results
described above.

Application of optimal LES to wall bounded turbulence in conjunction with the flitered wall/no-
leakage wall stress model will be enabling for LES of complex wall-bounded flows. The effective-
ness of the OLES formalism in this application was demonstrated previously by appealing to DNS
statistical data for required modeling inputs, but to use it in applications requires that the need for
empirical data be eliminated. This can be done using theory for the multi-point correlations of
turbulence [26]. When small-scale isotropy is valid, Kolmogorov inertial range scaling and mild
modeling assumptions allow the required correlations to be determined, and the resulting models
need to be evaluated and tested. For anisotropic inhomogeneous turbulence, a generalization of
these correlation models is needed. An approach based on the structure tensor representation of
anisotropy was proposed earlier. Here, we generalize and evaluate that approach for use in wall-
bounded turbulence. Finally, previous applications of OLES to wall bounded flows were based
on a spectral representation of the LES velocity fields [39, 5]. To support complex flow domains,
the finite-volume formulation of OLES needs to be applied to wall-bounded turbulence. These
developments have been pursued in preparation for application of OLES in complex wall-bounded
turbulent flows.

3 Supported Research

To pursue the objectives defined above, a number of research activities were pursued under the
current grant. These are described briefly below and in more detail in the following subsections,
and the referenced publications.

1. Theoretical OLES Refinement & Testing: The most difficult statistical input to determine
theoretically for the OLES formulation is the three-point third-order velocity correlation
tensor. A recent development by Chang & Moser [9], provides such a model, and so here,
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OLES based on this theoretical model has been formulated and tested. Further, an asymptotic
analysis for small LES filter width compared to the large scales of turbulence, produces a
particularly simple Finite-Volume OLES model, which can be expressed as a finite-volume
scheme representing unresolved turbulence.

2. Refinement and Generalization of Anisotropy Models: An important feature of near-wall
turbulence, is that it is highly anisotropic, and inhomogeneous. The resulting anisotropy in
the sub-filter scale turbulence needs to be represented, and in the OLES framework, this is
done by representing anisotropy in the multi-point correlations. We use an approach for this
based on the RANS structure tensors developed by Kassinos & Reynolds [14]. The resulting
anisotropy represented was tested for its ability to reproduce the two-point correlation in
channel flow, and it is quite good. It is also very complicated, and a potential alternative,
moread hoc, approach is also discussed.

3. Generalization and Testing of Finite-Volume Wall-Bounded OLES: Finite-volume for-
mulations of OLES are much to be preferred over spectral formulations, that have until now
been used in wall-bounded flows. Wall-bounded finite-volume OLES thus needs to be for-
mulated and tested. Here that is done using statistical data from DNS.

3.1 Theoretical OLES Refinement & Testing

3.1.1 Finite-Volume Optimal LES

In finite-volume OLES, the LES state variables are the velocities averaged over discrete volumes.
The mapping (filter) is equivalent to the application of a top-hat filter followed by sampling on a
grid. The LES evolution equations are then determined from the volume averaged Navier-Stokes
equations given by :

V v duv
i

dt
= −

∑

s

F s
i −

∑

s

Ps
i +

∑

s

Vs
i (1)

whereuv
i is the velocity averaged over the volumev, V v is the volume ofv andF s

i , Ps
i andVs

i are
the convective flux, pressure force and viscous flux, respectively, for the surfaces. The sums in (1)
are over the faces of the volumev. The quantities appearing in (1) are defined as:

uv
i =

1

V v

∫

v

ui δx (2)

F s
i =

∫

s

uiujn
s
j δx (3)

Ps
i =

∫

s

pns
i δx (4)

Vs
i =

∫

s

ν
∂ui

∂xj

ns
j δx (5)

whereui is the turbulent velocity andns
j is the outward-pointing unit normal to the surfaces. As

indicated, the integrals are over a volumev or one of the facess bounding a volume. To distinguish
the simulation quantities in an LES from the filtered real turbulence, the symbolwv

i will be used

4



to represent the LES variables. The goal, of course, is for thedynamics and statistics ofwv
i to

approximate those ofuv
i as closely as possible.

The evolution equation forwv
i will be the same as that foruv

i (1), with the fluxes replaced by
models. In the context of OLES, the fluxesF s

i , Ps
i andVs

i are to be modeled using stochastic
estimation. For the current development, we will consider the limit of infinite Reynolds number in
which the viscous fluxVs

i is negligible. Further, the pressure force will be treated as in Langford
& Moser [20] (see section 3.1.3), so the development in this section will focus on the convective
fluxesF s

i . These fluxes are to be modeled in terms of linear and quadratic functions of the LES
state variableswv

i . At least quadratic dependence is required here because the convective fluxes
are themselves quadratic in the velocity. The estimate for the convective flux is thus of the form:

F s
i ≈ Ai(s) +

∑

v1

Lij(s, v1)w
v1

j +
∑

v1,v2

Qijk(s, v1, v2)w
v1

j wv2

k (6)

whereAi(s) is a constant term,Lij(s, v) is the linear estimation kernel, andQijk(s, v1, v2) is the
quadratic estimation kernel. The range of the sums in (6) can be selected to be as large or small as
desired, with the expectation that a larger range (a larger stencil) will produce more accurate results,
though, as the stencil grows to include more distant and less well-correlated data, a diminishing
return is expected [19]. It was found by ZLM [42] that a sum over 4 or 6 volumes was sufficient
to get quite accurate LES results. In the LES performed here, a stencil is used that sums over 4
volumes (a1 × 1 × 4 stencil, see ZLM and section 3.1.3).

The minimum mean square error between the ideal LES and the estimate (6) is attained when
[1, 19, 39]:

〈F s
i 〉 = Ai(s) +

∑

v1

Lij(s, v1)
〈
uv1

j

〉
+

∑

v1,v2

Qijk(s, v1, v2)
〈
uv1

j uv2

k

〉
(7)

〈F s
i u

v3

l 〉 = Ai(s) 〈u
v3

l 〉 +
∑

v1

Lij(s, v1)
〈
uv1

j uv3

l

〉
+

∑

v1,v2

Qijk(s, v1, v2)
〈
uv1

j uv2

k uv3

l

〉
(8)

〈F s
i u

v3

l uv4

m〉 = Ai(s) 〈u
v3

l uv4

m〉 +
∑

v1

Lij(s, v1)
〈
uv1

j uv3

l uv4

m

〉

+
∑

v1,v2

Qijk(s, v1, v2)
〈
uv1

j uv2

k uv3

l uv4

m

〉
(9)

These equations can be solved for the estimation coefficients (kernels)Ai, Lij andQijk. The
statistical correlations appearing in the estimation equations (7-9) are needed as input for the OLES
procedure.

3.1.2 Theoretical Determination of Correlations

The correlations required for the OLES formulation are among the LES state variables (volume-
averaged velocities) and the modeled quantities (convective fluxes). To determine them theoreti-
cally, they must be related to turbulence statistical quantities for which we have theories. This can
easily be done, by writing the correlations appearing in (7-9) as integrals of multi-point velocity
correlations. Three correlation tensors are needed to determine the estimation coefficients. Models
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for these tensors must be provided as input to the OLES procedure. To develop these models,
a number of assumptions will be made. First it is assumed that on length scales required for
the analysis (i.e., several filter widths), the turbulence is both homogeneous and isotropic. Using
homogeneity, the required correlations are written:

Rij(r1) = 〈u′
i(x)u′

j(x1)〉 (10)

Tijk(r1, r2) = 〈u′
i(x)u′

j(x1)u′
k(x2)〉 (11)

Fijkl(r1, r2, r3) = 〈u′
i(x)u′

j(x1)u′
k(x2)u′

l(x3)〉, (12)

with the dependence expressed in terms of spatial separations,ri = x − xi.

Second, it is assumed that the spatial separations are small enough to be within the Kolmogorov
inertial range and that the Reynolds number based on the filter width is sufficiently large that it can
be considered to be infinite. With these assumptions, the Kolmogorov [16, 15] expressions for the
second and third-order longitudinal structure functions are valid:

S2(r) = 〈(u‖(x) − u‖(x1))2〉 = Cǫ2/3r2/3 (13)

S3(r) = 〈(u‖(x) − u‖(x1))3〉 = −
4

5
ǫr (14)

wherer = |r| is the magnitude of the separation vector,u‖ is the velocity component in the
direction of the separation vector andC is the Kolmogorov constant. From these expressions and
isotropy and continuity constraints, expressions for the two-point second- and third-order correla-
tions can be derived:

Rij(r) = u2δij +
C

6
ǫ2/3r−4/3(rirj − 4(r)2δij) (15)

Tijk(0, r) =
ǫ

15

(
δijrk −

3

2
(δikrj + δjkri)

)
(16)

The result for the second-order correlation is well known. The expression for the third-order
correlation is less common, but it is a direct consequence of the 4/5 law (14) and the general
isotropic form derived by von Ḱarmán & Howarth [40] (see also [3, 24]). Further, the analysis
leading to (16) is implicit to the derivation of the 4/5 law. The two-point third-order correlation in
(16) is precisely the correlation needed to compute the correlation of fluxes with volume averaged
velocities. However, the more general third-order three-point correlation is also needed for the
correlation of three volume averaged velocities (see below).

Finally, to determine an expression forFijkl, we invoke the quasi-normal approximation, which
states that the fourth-order cumulants are zero. This implies thatF can be expressed in terms of
the two-point correlationR:

Fijkl(r1, r2, r3) ≈ Rij(r1)Rkl(r3 − r2) + Rik(r2)Rjl(r3 − r1) + Ril(r3)Rjk(r2 − r1) (17)

The quasi-normal approximation is infamous in turbulence because it is well-known to result in
unrealizable spectra when used in two-point closure models [17, 29, 30, 21]. However, its appli-
cation here in optimal LES modeling can result in no such catastrophe because the LES equations
being solved are not for statistical quantities to which realizability constraints apply. Similarly,
the modifications added to the quasi-normal approximation to assure realizability in two-point
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Figure 1: Relative errorφij,kl in the quasi-normal approximation to the non-zero elements of the
fourth-order correlationFijkl(0, r, r), with separation in thex1 direction. To obtainφ, the error in
F is normalized by[FijklFijkl(0, r, r)]

1/2. Due to isotropy the2 and3 indices can be swapped with
identical results.

closures, such as “eddy damping” and Markovization in EDQNM [21], are applied to the evolu-
tion equation for third-order correlations. Since no such correlation evolution equations are being
solved here, these refinements are not applicable. Finally, the quasi-normal approximation is gen-
erally quite accurate in isotropic turbulence [38]. For example, the error was measured in a forced
isotropic turbulence DNS atReλ = 164 [19], and is shown in figure 1. The small magnitude
of these errors does not necessarily imply that they are dynamically insignificant. Ultimately,
the performance of the resulting models is the most important measure of the accuracy of these
approximations (see section 3.1.3 for example LES results).

With the exception of the third-order three-point correlation, all the correlations required for the
OLES model have now been defined. Unfortunately, the simple theories employed here are not
sufficient to determine an expression for the three-point third-order correlation. Indeed, just writing
down the most general isotropic form satisfying continuity constraints is difficult [33]. Based on
this most general form, Chang & Moser [9] developed a model forTijk(r

1, r2) for stationary,
incompressible, homogeneous, isotropic turbulence for separationsr1 andr2 in the inertial range,
and under the assumptions of small scale isotropy and infinite Reynolds number. This model is
algebraically very complex, with more than 758 terms, so it will not be written here. Computer
programs to evaluate the tensor numerically are available at http://turbulence.ices.utexas.edu.

3.1.3 Testing Theoretical Optimal LES

To assess the validity of the theoretically determined correlations for use in OLES models, several
of the simulations performed by ZLM [42] were repeated with the theoretically determined corre-
lations in place of the DNS-determined correlations used by ZLM. The details of these simulations
are given briefly below.
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The simulations were performed for forced isotropic turbulence, using a finite-volume OLES for-
mulation like that described here and, in more detail, in ZLM [42]. As described in section 3.1.1,
three fluxes need to be estimated. The convective fluxF , the pressure forceP and the viscous flux
V. In these simulations, the viscous fluxes are zero, consistent with the infinite-Reynolds number
assumption used for the convective fluxes. As described by Langford & Moser [20] and as imple-
mented by ZLM [42], the pressure force is determined by imposing an approximate divergence-
free constraint, which is consistent with the second-order staggered grid finite-volume divergence
operator. This is an optimal representation of divergence [20], which minimizes the expected error
incurred by imposing an approximate divergence-free constraint.

The primary model to be considered here is that for the convective fluxesF . The theoretical models
described in section 3.1.2 for the multi-point correlations were integrated numerically to determine
the correlations used in the estimation equations (7–9).

The integrals need to be performed for each combination of volumes and surface in the stencil and
for each velocity component in the stencil. The stencil used here is a1 × 1 × 4 simple stencil on
a staggered grid, which is stencil S4 as described by ZLM [42]. This stencil was selected because
ZLM found that it is the smallest that yields gooda posterioriresults. Because the stencil is defined
on a staggered grid, its definition is somewhat complicated. See Appendix B in [42] and [26] for a
complete description.

Since the advent of the dynamic procedure in LES modeling [13], it has been common practice
to seek ways in which LES model parameters can be determined from the LES in which they are
being used. This has the advantage of eliminating adjustable model constants and allowing the
model to respond to the particular details of the flow. In the OLES models developed here, only
those model parameters that are clearly flow-dependent (i.e. velocity varianceu2 and dissipation
rateǫ) are treated dynamically, while the other constants that appear in the formulation, such as
the Kolmogorov constant, which is given its usual valueC ≈ 2, are treated as universal constants.
Setting these quantities directly reduces both the complexity of the simulations and the chance that
the process of determining the constants will introduce spurious dynamics into the simulation.

Using the correlations derived from our theory, it is straightforward to dynamically determine
estimates ofu2 = 2k/3 andǫ in a running LES. That is what is done here, with the values being
set at each time step (see [26] for details) The error in the dynamically determined value for the
dissipation,ǫest, computed using filtered data from a DNS atReλ = 164 [19] is shown in figure 2.
When the separationr is in the inertial range,ǫest is within a percent of the value determined
directly from the DNS (ǫDNS).

3.1.4 Asymptotic Optimal LES Models

The estimation equations can be solved asymptotically for smallγ = ∆ǫ/u3. Use of the low-
est order asymptotic kernels simplifies the LES model because it removes theγ dependence of
the kernels. Then, even whenu2 andǫ are being determined dynamically, the scaled kernels do
not change. Indeed, the lowest order quadratic kernelQ̃0 is scaled only with∆, so, even when
unscaled, the kernel only depends on the geometry of the cells being used to estimate the fluxes,
and notu2 andǫ. In this way, the asymptotic quadratic kernel can be thought of as a finite-volume
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Figure 2: Relative error in estimating the dissipation from the longitudinal third-order structure
function of a finite-volume filtered velocity field. Filtered structure functions were computed by
filtering the DNS atReλ = 164 of [19]. The filter was defined on a cubical finite volume grid of
the size noted, on a periodic domain of size2π. Each finite volume is of size∆, andr is the offset
between the volumes used to compute the structure function.

v1 L̃0
nn(s, v1) L̃0

tt(s, v1)
2 0.05764 0.02623
1 -0.39059 -0.12768

Table 1: Values of the elements ofL̃0 as determined for the1×1×4 stencil, with volume labels as
defined in figure 3. The value of̃L0 for volumes not listed here are determined from the symmetry
L̃0

αα(s,−v1) = −L̃0
αα(s, v1).

scheme for the quadratic terms that is consistent with the statistics of turbulence. In addition to
exploring the performance of theoretical OLES using the full kernels, determined without asymp-
totic approximation (the finite-γkernels), the performance of the lowest order asymptotic models
will be evaluated.

The asymptotic solution for the kernels is easier to understand when applied to the “simple” opti-
mal models employed here. Because of isotropy, we need only consider the velocity component
normal to the face through which the flux is being estimated and a generic velocity component
tangential to the face being considered. In what follows, these components will be denoted with
subscriptn andt respectively (repeatedn andt do not imply summation). For simple OLES mod-
els, flux of normal momentum is estimated in terms of quadratic products of the formunun and
linear dependence onun only. Tangential fluxes are estimated with quadratic and linear terms of
the formunut andut, respectively. As a consequence, the only quadratic kernel elements areQ̃nnn

andQ̃tnt, and the linear kernel elements areL̃αα, where the subscriptα can be eithern or t, and
no summation is implied.

Values of the scaled asymptotic kernel elements are given in table 1 and 2 for the1× 1× 4 stencil.
In these tables, the volume labels are as defined in figure 3, for estimates of the flux through the
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Figure 3: Volumes (and their numbering) in a1 × 1 × 4 staggered grid stencil to estimate the flux
through the surface between volumes -1 and 1. For the normal-component flux (n), the volumes
with solid outlines are on then-component mesh, and the dashed-outline volumes are not used.
For the tangential-component flux (t), the solid volumes are on thet-component mesh, and the
dashed volumes are on then-component mesh. In tables 1, 2, the volumes are referred to by the
numbers shown here, but no distinction is made between0+ and0− because the values associated
with these volumes are the same.

v1 v2 Q̃0
nnn(s, v1, v2)

2 2 0.00913
2 1 -0.11485
2 -1 -0.21432
2 -2 0.04386
1 1 0.21467
1 -1 1.16690

v1 v2 Q̃0
tnt(s, v1, v2)

0 2 -0.06617
0 1 0.31617

Table 2: Values of the elements ofQ̃0 as determined for the1×1×4 stencil, with volume labels as
defined in figure 3. The value of̃L0 for volumes not listed here are determined from the symmetry
Q̃0

αnα(s,−v1,−v2) = Q̃0
αnα(s, v1, v2).
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Figure 4: Three-dimensional energy spectra (a) and third-order structure functions (b) from OLES
of isotropic turbulence at infinite Reynolds number using the finite-γkernels, with resolutions
ranging from163 to 1283 (γ ≈ 0.17 to γ ≈ 0.02, respectively). The solid lines in both plots are
determined from Kolmogorov theory. In (a), the two solid lines are ak−5/3 slope (shallow), and
the result of filtering ak−5/3 spectrum. In (b) the straight line isS3 = −4

5
ǫr, and the other solid

line is the structure function of the filtered velocity determined fromI3.

cell face between volumes -1 and 1. The results of performing an LES with the asymptotic kernels
are compared to that for the finite-γkernels in section 3.1.5.

3.1.5 LES Results

The performance of the theory-based OLES models developed here is evaluated in isotropic tur-
bulence at infinite Reynolds number, simulated in a periodic cube with sides of lengthL = 2π.
The three dimensional energy spectra and third-order structure function obtained using a1× 1× 4
stencil [42] on a staggered grid are shown in figure 4 for different grid resolutions (163 to 1283) cor-
responding to finite-volume filter widths varying from∆ ≈ 0.39 to 0.05. In these forced isotropic
turbulence simulations, the energy is injected at the rateǫ ≈ 62.3468, and the simulations result in
a u2 ≈ 28, yieldingγ ≈ 0.17 to 0.02 for the163 to 1283 grid sizes, respectively. In all the spec-
tra presented here, the wavenumberk is normalized bykmin = 2π/L, and the three dimensional
energy spectrumE(k) is normalized byǫ2/3k

−5/3
min .

For all filter widths, the high wave-number portion of the LES energy spectrum exhibits a slope
consistent with the filtering of ak−5/3 inertial range. For larger grid sizes and at lower wavenum-
bers, the shallowerk−5/3 slope is evident, and this range becomes longer with increased resolution.
This is the converged, resolution-independent part of the solution. The shifting of the filtered part
of the spectrum to higher wavenumbers with increasing resolution is expected, since the filter width
is being decreased. Similarly, the third-order longitudinal structure function agrees very closely
with the theoretical filtered structure function obtained by integrating the third-order three-point
correlation model [9] over the finite volumes. As expected, as the resolution increases, the sim-
ulation structure functions approach the−4

5
ǫr dependence expected in the inertial range. This
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Figure 5: Three-dimensional energy spectra (a) and third-order structure functions (b) from OLES
of isotropic turbulence at infinite Reynolds number using both finiteγ and asymptotic kernels
(signified with “A”), with resolution323 and1283 (γ = 0.08 andγ = 0.02 respectively). Solid
lines in (a) and (b) are as in figure 4.

suggests that LES is correctly representing the inertial-range energy transfer. In short, the behavior
exhibited in figure 4 is precisely what is expected, indicating that the theory-based OLES model
is representing the effects of the unresolved scales at infinite Reynolds number in a consistent,
resolution independent way.

The LES results presented in figure 4 were obtained using the finite-γOLES kernels, but as indi-
cated in section 3.1.4, it will generally be more convenient to use the small-γasymptotic kernels.
A comparison of LES results from the finite-γand asymptotic kernels is shown in figure 5. At
both1283 and323 resolutions, corresponding toγ ≈ 0.02 and 0.08, respectively, the spectra and
structure functions from the two cases are indistinguishable.

A finite Reynolds number case was simulated using OLES to gauge the performance of the optimal
models compared to a standard model (dynamic Smagorinsky). Spectra and structure functions
from these simulations are shown in figure 6 along with that from filtered DNS. Results for both
1×1×2 and1×1×4 stencils on a staggered323 grid are shown. With the dynamic Smagorinsky
model, the two stencils correspond to second- and fourth-order schemes. Comparing the1× 1× 4
stencil optimal model to the corresponding dynamic model, a sharp roll-off of the spectrum at high
wavenumbers is evident with the dynamic model, but not present in the optimal model. The optimal
model apparently yields a better treatment of the model dissipation at high wavenumbers. However,
the1 × 1 × 2 stencil optimal model does have the sharp roll-off. The optimal model spectra also
have a somewhat steeper slope than either the filtered DNS or the dynamic model, but this slope
is consistent with the filteredk−5/3 spectrum. Optimal models for these stencils that are based on
the DNS correlations do not exhibit this difference in slope of the spectrum between the model and
filtered DNS (see ZLM [42]). It appears that the optimal model results reflect the infinite-Reynolds
number theory on which the correlations are based, which is not strictly applicable to this moderate
Reynolds number case. For the third-order structure function, the optimal models are somewhat
more accurate in the mid-range of separations than the dynamic Smagorinsky. Otherwise, the
model results are comparable.
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Figure 6: Three-dimensional energy spectra (a) and third-order structure function (b) from LES
of isotropic turbulence on a323 finite-volume grid atReλ = 164 using the dynamic Smagorinsky
model and finite-γoptimal models, with1× 1× 2 and1× 1× 4 stencils. Also shown is a filtered
DNS. Numbers on the curve labels indicate the stencil size, 2 signifies the1 × 1 × 2 stencil, 4 is
the1 × 1 × 4 stencil.

At high Reynolds numbers these optimal models should yield accurate results (as seen in figure 4),
and will generally be superior to the dynamic model due to the elimination of the sharp spectral
roll-off near the cutoff.

3.1.6 Role of the Three-Point Third-Order Correlation

The most difficult modeling task involved in formulating the models presented here is the represen-
tation of the three-point third-order correlation. The representation for this quantity was feasible
[9] only because of the assumption of small-scale isotropy. In more complex situations in which
the small-scale isotropy assumption would not be valid, detailed modeling of the three-point third-
order correlation will be much more difficult, if not infeasible. It is interesting, then, to consider
how important this quantity is to the modeling and thus how well it needs to be known.

The primary use of the three-point correlations is in the terms that couple the equations for the
quadratic and linear kernels. The coupling is most important in the equation for the linear kernels,
as the coupling term in the quadratic equation is second order inγ2/3. The equation for the linear
kernels can be interpreted as a condition requiring that the contributions of the model to the filtered
two-point correlation be the same as that for true turbulence, at least for separations included in
the kernel stencil (see [19]). The critical role ofI3, the integral of the three-point correlation, then,
is to measure this contribution of the quadratic part of the model. In particular, it measures the
contribution of the quadratic model term to the transfer of energy to the small scales. However,
the contribution to the dissipation (transfer to small scales) of the asymptotic quadratic model term
is actually quite small (about 2%, see [26]). If this were generally indicative of the contribution
of the I3 terms to the estimation equations, then it would be reasonable to neglect them, greatly
simplifying the modeling problem by making it largely unnecessary to develop a model for the
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Figure 7: Three-dimensional energy spectra (a) and third-order structure functions (b) from OLES
of isotropic turbulence at infinite Reynolds with resolution of323 (γ = 0.08). Compared are results
using the finiteγ kernels, asymptotic kernels (signified with “A”) and asymptotic kernels generated
by neglecting theI3 terms in the estimation equations (signified with ”N”). Solid lines in (a) and
(b) are as in figure 4.

three-point third-order correlation.

To explore this possibility, a set of asymptotic kernels were determined by neglecting theI3 terms
in the asymptotic estimation equations. Large eddy simulations with these modified kernels were
performed, and the results for the three-dimensional spectrum and third-order structure function
are shown in figure 7. The spectrum in the simulation that neglected theI3 terms differs from that
obtained with the usual asymptotic kernels in the highest octave of wavenumbers, with an up-turn
followed by a sharper roll-off. This demonstrates the role of theI3 terms in shaping the scale-
distribution of the dissipation provided by the linear part of the model, in addition to the overall
dissipation rate described above. The effect of neglecting theI3 terms on the simulated third-order
structure function is pronounced only at separations greater than4∆, for reasons that are not clear.

The importance of these differences to a practical LES can be debated. In general, whether or not
the additional modeling error introduced by neglecting theI3 terms is acceptable will depend on
the goals of a particular simulation. The modest impact on the LES results in this case suggests that
neglecting theI3 terms or crudely modeling the underlying three-point third-order correlation (e.g.
to account for anisotropy) may be a viable strategy in more complex flow situations. However,
one must be cautious in this conclusion since in more complex situations, the quadratic operator
may not behave as well, requiring a more tailored correction with the linear term, which would be
determined through theI3 terms.
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3.2 Refinement and Generalization of Anisotropy Models

For a given velocity fieldu(x), the two-point correlation tensorRij is given by

Rij(x, r) =
〈
u′

i(x)u′
j(x + r)

〉
, (18)

whereu′ = u−〈u〉 is the fluctuating velocity field. Two-point correlations of velocity fluctuations
are an important ingredient of the optimal LES formulations pursued here, as discussed in the
previous section. Indeed a correlation representation with a finite number of parameters can be
filtered and then fit to the correlations of an LES. The resulting parameters then yield a model for
the underlying unfiltered correlations. This ability to infer the correlations ofu′ from the statistics
of the filtered fields is fundamental to LES, it forms the basis of subgrid modeling, and is necessary
if one is to use the results of LES for analysis of turbulent flows. It is this need to represent velocity
correlations in turbulent flows with complex geometries that motivates the current work.

At any givenx location, one of the key properties ofRij that needs to be represented is its
anisotropy, both with regard to how differentRij(x, 0) is from Rkk(x, 0)δij/3, (componental
anisotropy) and with regard to the elongation of the isocontours ofRαα(x, r) for different direc-
tions in separation (directional anisotropy). Perhaps the most notable effort to represent this
anisotropy was made in the work by Aradet al[2], which we will briefly describe, before dis-
cussing our motivation to pursue a different approach. In the approach taken by Aradet al[2], a
complete basis forRij was formulated in terms of subspaces that are invariant to rigid rotation of
the frame of reference, i.e. an SO(3) decomposition was proposed forRij(r). Thus, a given second
rank tensor function ofr, sayTij(r), can be expanded asTij(r) = Tij(0)+

∑
qlm aqlm(r)Bqlm

ij (r/r)

(no summation implied on repeated indices). Here,Bqlm
ij (r/r) are basis tensors depending only

on the angular variation inr, while aqlm(r) are scalar functions. For a given(l,m), the set
{Bqlm

ij (r/r); q = 1, .., Nq(l)} is generated fromYlm(r/r), the spherical harmonics, and this is a
finite-dimensional subspace (i.e.Nq(l) is finite for all l) that is invariant to rotational transfor-
mations. In the context of turbulent flows, for expansions ofRij(r), a power-law form was then
proposed for the scalar functions, i.e.aqlm(r) = cqlmrξ(l), and it was speculated that ifl1 > l2 then
ξ(l1) > ξ(l2). The existence of a hierarchy for the power-law exponents would of course be very
valuable, because at smallr, the modes with lowerl would dominate, and thereforeRij(r) could
be well approximated with a truncated series, yielding a finite-dimensional representation.

A power law hierarchy has indeed been found in correlations constructed from DNS of homoge-
nous turbulent flows [7]. However, DNS data of wall-bounded flows at high Reynolds number do
not yield clear evidence of this hierarchy amongst the anisotropic (l >0) modes[8]. A similar
result was obtained when we performed SO(3) decompositions ofRij(r) computed from DNS at
Reτ = 940 (not shown here). Inhomogeniety in the wall-normal (y) direction is a possible reason
for the lack of hierarchy of power-law exponents in wall-bounded flows. Kurien and Sreenivasan
[18] accounted for ther ∼ y range ofRij(r) while measuring exponents in a turbulent bound-
ary layer, and found thatξ(2) was much larger thanξ(0), consistent with an approach to isotropy
at small scales. However, no comparison was made amongst thel 6= 0 exponents. Without a
hierarchy in the power-law exponents, it is difficult to choose one set of SO(3) modes over others.

The abovementioned issues with the SO(3) decomposition in the context of wall-bounded flows
motivated us to investigate a different approach. Here,Rij(r) is represented approximately in
terms of single-point tensors, the structure tensors proposed by Kassinoset al [14] (referred to
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below as KRR). These second-order tensors are single-point moments of derivatives of fluctuat-
ing stream functions, which can therefore be related to integrals of two-point correlations overr.
Though these tensors are single-point moments, they contain information about the “structure” of
the anisotropy, e.g. the distribution of energy in different components of velocity, the dimension of
turbulence, etc (discussed in [6]). Also, in the context of constructing a closure model for Reynolds
stresses, it was shown by KRR that it is vital to represent the pressure-strain correlation in terms
of structure tensors in order to obtain the correct evolution of the Reynolds stress components in
the rapid distortion limit. The experience of KRR with the structure tensors suggests that they
encode anisotropy information that is important to the evolution of the turbulence. This motivates
the proposed ansatz that the anisotropy inRij be expressed in terms of structure tensors through
the use of the theory of invariants [35] to construct the most general linear form.

The obvious advantage of this approach over the one by Aradet al[2] is that even the most general
basis of tensor functions obtained here is finite-dimensional, so no power law hierarchy is needed
to truncate the representation. However, unlike the SO(3) representation, the linear representaion
in terms of structure tensors is not a complete basis forRij(r). The quality of the representation
depends on the validity of the modeling ansatz on which it is based. To evaluate the capabilities and
shortcomings of our representation, we obtain a model forRij by fitting it to correlations obtained
from DNS, and compare the two correlations (Sec. 3.2.3).

The results of this anisotropy development are described briefly below, and in more detail in [6].

3.2.1 Background

Structure tensors are single-point moments of derivatives of stream functions. The set of struc-
ture tensors that are nonzero for homogeneous turbulence are given by the Reynolds stress (or
componentality)Bij, dimensionalityDij, circulicity Fij and stropholysis̃Q∗

ijk. In addition for
inhomogeneous turbulence the inhomogeneity tensorCij is non-zero. See [14] for definitions.
These tensors measure different characteristics of the anisotropy, particularly the anisotropy of the
velocity components (B), the anisotropy of correlation lengths (D), the anisotropy of the vorticity
components (F), the breaking of planar reflection symetries (Q̃) and the anisotropy arising due
to inhomogeneity (C). While these structure tensors are single-point statistical quantities, they
can be expressed in terms of the two-point second-order velocity correlation, and can therefore be
interpreted as measures of the anisotropy of this correlation [6].

3.2.2 A Model Form for the Homogeneous Anisotropic Two-Point Correlation

In formulating a structure-tensor based anisotropic model of the two-point correlation tensor, it
will be convenient to consider an infinite Reynolds number representation forRij, with a finite
Reynolds number (viscous) correction. In the limit of infinite Reynolds number, the inertial range
variation of the correlations (assumed to follow a power-law) extends all the way to zero separation,
where the derivatives of the correlation are then discontinuous. At finite Reynolds number, the
discontinuities atr = 0 will be “healed” in a region ofr with size of order the Kolmogorov scale
η, so the finite Re correlation must diverge from the infinite Re correlation for smallr (see Fig. 8).
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To distinguish the finite and infinite Reynolds number quantities, a superscriptν will indicate the
finite Reynolds version, so that:

Rij(r) = lim
Re→∞

Rν
ij(r), (19)

Bij = lim
Re→∞

Bν
ij. (20)

The inertial range over which the infinite Reynolds number model forRij(r) will be valid extends
overrǫ < r < rL, whererǫ ∼ η ≪ rL andrL ≪ L (L being the length scale of the flow geometry),
and the viscous healing occurs inRν

ij(r) for r < rǫ, as shown in Fig. 8. The representation ofRij

in terms of structure tensors models the infinite-ReRij(r). A weakly anisotropic finite Reynolds
number correction is then introduced forr ∼ η. The correction will be important when we fit our
representation to finite-Reynolds number correlations computed from DNS.

In [6], it was shown that the structure tensors encode important information about the anisotropy
of Rij. This information is now assumed to be sufficient to reproduce the anisotropic features of
the correlation in anisotropic turbulent flows. The correlation is thus assumed to depend on the
structure tensors and the separation vectorr. Since we are striving to represent anisotropy, it will
be convenient to re-express the dependencies in terms of the anisotropy tensors associated withB,
D andQ̃∗, which are given by

bij =
Bij

q2
−

δij

3
(21)

dij =
Dij

q2
−

δij

3
(22)

Q∗
ijk =

Q̃∗
ijk

q2
(23)
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whereq2 = Bii. A model forRij(r) of the form

Rij(r) = Bij + Fij(r,b,d,Q∗) (24)

is thus sought, which is formulated so thatFij goes to zero atr = 0. Furthermore, the functionFij

will be required to satisfy the following restrictions:

• The model forRij is meant for inertial range separationsrǫ < r < rL, and our modeling
assumption is that the effects of the large scale will be negligible within this range. Any fit-
ting to DNS data will be done over only this range. Therefore,Fij does not depend explicitly
on rL, and we do not explicitly model the correlation forr > rL.

• The dependence onbij,dij andQ∗
ijk is linear. This assumption is consistent with the exact

linear relationship between the structure tensors andRij.

• Fij(r,b,d,Q∗) is invariant to proper rotation of the reference frame as well as to changes in
the handedness of the axes of the reference frame.

• The symmetryRij(r) = Rji(−r) is satisfied, which is exactly true for homogeneous turbu-
lence.

The most general linear representationFij(r,b,d,Q∗) is constructed using the invariant theory of
tensors [35] to obtain the following form forRij:

Rij(r) = Bij + RI
ij(r) + Rb

ij(r,b) + Rd
ij(r,d) + RQ

ij(r,Q
∗), (25)

where,

RI
ij(r) = f1(r)δij + f2(r)rirj, (26)

Rb
ij(r,b) = f3(r)bij + [f4(r)δij + f5(r)rirj]r · b · r (27)

+f6(r)[ri(r · b)j + rj(r · b)i],

Rd
ij(r,d) = f7(r)dij + [f8(r)δij + f9(r)rirj]r · d · r (28)

+f10(r)[ri(r · d)j + rj(r · d)i],

RQ
ij(r,Q

∗) = f11(r)[ǫimkQ
∗
klj + ǫjmkQ

∗
kli]rlrm (29)

+f12(r)[rjǫink + riǫjnk]Q
∗
klmrlrmrn.

Heref1(r)—f12(r) are scalar functions ofr. The number of free scalar functionsfi(r) is reduced
by invoking constraints imposed by continuity and by self-consistency of the representation. In
particular, a constraint is imposed that terms involvingd, for example, not contribute to the com-
ponentalityB or stropholysisQ̃ of the model correlation, and similarly for the other terms.

The resulting constraints are:

f ′
1 + r2f ′

2 + 4rf2 = 0, (30)
f ′

4 + 6rf5 + r2f ′
5 + f ′

6 = 0, (31)
2rf4 + f ′

3 + 5rf6 + r2f ′
6 = 0, (32)

f ′
8 + 6rf9 + r2f ′

9 + f ′
10 = 0, (33)

2rf8 + f ′
7 + 5rf10 + r2f ′

10 = 0, (34)
r2f ′

12 + 7rf12 + f ′
11 = 0, (35)
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for continuity, and:

2bij

15
(15g + 9rg′ + r2g′′ + 35r2f5 + 13r3f ′

5 + r4f ′′
5 ) = 0, (36)

dij

15
(30f ′

7/r + 15f ′′
7 + 40r2f9 + 20r3f ′

9 + 2r4f ′′
9

+60f10 + 60rf ′
10 + 10r2f ′′

10) = 0, (37)

for self-consistency, whereg = 3f4 + 2f6 (see [6] for details).

Because of the linearity of the constraints and the assumed linear dependence ofRij on the struc-
ture tensors, the continuity and self-consistency constraints described above act individually on
RI , Rb, Rd andRQ, without coupling between them. For each of these terms in the anisotropy
model, the constraints leave one scalar function undetermined. We assume here that these func-
tions are power-laws inr, consistent with the expected functional form of the correlation in the
inertial range. The constraints then require that each of the four terms in the model forRij has
an overall power-law dependence on the separation magnituder, with a single exponent for each
term. Call these four power-law exponentspI , pb, pd andpQ. The scalar functionsfi(r) then have
the formfi(r) = air

[pα−zi], whereα is one ofI, b, d, Q, depending on the term in whichfi appears
andzi is a positive integer, which is the net power ofr multiplying fi in (26)-(29). For example,
z3 = 0, z4 = 2 andz5 = 4. The coefficientsai are also constrained, so that only four of them are
independent. We choose to specifya1, a3, a7 anda11. Given a set of power-law exponentspα, the
ratios of the rest of the coefficients to these four coefficients are fixed by the constraints. Thus we
can rewrite Eqns. (26)-(29) as:

Rij(r) = Bij + ∆Rij(r), (38)

where

∆Rij(r) = a1r
pI−2

[
r2δij +

a2

a1

rirj

]

+a3r
pb−4

{
r4bij + [

a4

a3

δijr
2 +

a5

a3

rirj]r · b · r +
a6

a3

r2[ri(r · b)j + rj(r · b)i]
}

+a7r
pd−4

{
r4dij + [

a8

a7

δijr
2 +

a9

a7

rirj]r · d · r +
a10

a7

r2[ri(r · d)j + rj(r · d)i]
}

+a11r
pQ−4

{
[ǫimkQ

∗
klj + ǫjmkQ

∗
kli]r

2rlrm

+
a12

a11

[rjǫink + riǫjnk]Q
∗
klmrlrmrn

}
. (39)

The above relation implies that if we fix{B,b,d,Q∗} then there are 8 degrees of freedom (dof)
in the representation, given by the fourpα anda1, a3, a7, a11.

At zero separation, the infinite Reynolds number inertial-range model in Eqn. (38) is equal to
the infinite Reynolds number Reynolds stressBij. While the finite and infinite Reynolds number
correlations will match in the inertial range, the Reynolds stressBν

ij will not, as indicated in Fig. 8.
It is important to account for this difference∆Bij = Bij − Bν

ij when fitting the inertial range
correlation model to data from finite Reynolds number turbulence as is done in Sec. 3.2.3, or when
using the model to evaluate the Reynolds stress in a turbulent flow (after fitting to an LES for
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example). While‖∆Bij‖ is usually small compared toBkk at large Re, an incorrect estimate of
Bij (for instance, usingBij = Bν

ij) shifts the correlation by∆Bij over all separations, including
the inertial range. Thus, a good estimate of∆Bij is needed even to match the model to finite
Reynolds number correlations in the inertial range.

As discussed above,Rij(r) andRν
ij(r) will correspond in the inertial range, but for sufficiently

small separations (r < rǫ), viscosity “heals” the derivative discontinuity that would be present if
the inertial range behavior extended tor = 0. In this viscous region, the finite Re correlation can
be represented as a second order Taylor series around zero, resulting in a composite representation:

Rν
ij(r) =

{
Bν

ij + Mijklrkrl for r < rǫ

Rij(r) for r > rǫ
,

whereMijkl is the tensor Taylor series coefficient. For simplicity, the matching will be done in
two steps. First,rǫ will be determined by matching the isotropic parts of the inner and outer
approximations, assuming that the isotropic parts of both approximations dominate at these small
separations. For this to be a self-consistent assumption, any anisotropy in the dissipation rate
tensorǫij must be weak, and the anisotropic power law exponents{pb, pd, pQ} must be greater
thanpI . Furthermore, it is assumed that the isotropic part of the inertial range correlation satisfies
Kolmogorov’s 2/3 law, that ispI = 2/3 anda1 = −2Ckǫ

2/3/3, whereǫ = ǫii/2 is the rate of
dissipation of kinetic energy. Equating the isotropic parts of the viscous and inertial-range models
at r = rǫ, one obtains:

Bν
kk

3
δij −

ǫ

15ν
r2
ǫ

(
δij −

1

2

rirj

r2

)
=

Bkk

3
δij −

2Ck

3
ǫ2/3r2/3

ǫ

(
δij −

1

4

rirj

r2

)
. (40)

The value ofrǫ is determined by matching the coefficients ofrirj

r2 to obtain:

rǫ = (5Ck)
3/4η. (41)

Whereη = (ν3/ǫ)1/4 is the Kolmogorov length scale andCk is the Kolmogorov constant. Consis-
tent with experimental measurements [36] a constant value ofCk = 2 is assumed here.

In the second step in the matching process, the correction toBij is determined by matching the
inner and outer models atrǫ in an integral sense:

∫
[Bij + ∆Rij(r)]

∣∣
r=rǫ

d∠ =

∫ [
Bν

ij + Mijklrkrl

] ∣∣
r=rǫ

d∠. (42)

Making use of the fact that

lim
r→0

∂2Rν
ij(r)

∂rk∂rk

= −
ǫij

2ν
= 2Mijkk. (43)

and substituting Eqn. (43) and Eqn. (39) into Eqn. (42) yields:

Bij = Bν
ij + ∆Bij, (44)
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Table 3: Specifics of the turbulent channel flow field (dimensionless)

Reτ 940
Resolution 3072 × 385 × 2304

Box Size(lx/h × lz/h) 8π × 3π

where

∆Bij = −r2
ǫ

ǫij

12ν
−

1

3
rpI
ǫ a1

[
3 +

a2

a1

]
δij −

1

15
rpb
ǫ a3

[
15 + 2(

a5

a3

+ 5
a6

a3

)

]
bij −

1

15
rpd
ǫ a7

[
15 + 2(

a9

a7

+ 5
a10

a7

)

]
dij. (45)

HerepI = 2/3 is now a fixed parameter in accordance with Kolmogorov’s 2/3rd law.

3.2.3 Fitting the representation to DNS correlations

To evaluate the accuracy of the anisotropy approximation developed here, we first evaluate the free
parameters in the model by fitting to correlations determined from the DNS and then compare the
model to the DNS data. The fitting procedure is described in [6].

The fully developed turbulent channel flow atReτ = 940 (Table 3) is used for the fitting and eval-
uation. Correlations were computed from DNS results, the details of which can be found in [12].
This is a highly inhomogeneous flow and so the extent to which the homogeneous representation
is valid will also be examined.

The only direction of inhomogeneity is the one perpendicular to the channel wall. Thex axis is in
the stream wise direction, and they axis is normal to the wall. The correlation can be written as
Rij(y, r) =

〈
u′

i(x)u′
j(x + r)

〉
|x2=y. The homogeneous model does not satisfy the inhomogeneous

continuity equationor the symmetry of the inhomogeneous correlationexactly. Instead, we will
assume thatRij(y, r) is locally homogeneous aty. This of course implies that all our fitting
parameters are functions ofy.

It is known that the inertial range ofRij(y, r) in the log layer is self-similar, with a similarity
variabler/y [12, 28]. To acknowledge this fact, the fitting volumeV ′

y = {r; rǫ(y) < r < rL(y)}
is defined such thatrL(y) is proportional toy near the wall (Fig. 9). Fig. 10 shows that the relative
error in the model correlation is less than20% throughout the channel. Also (Fig. 10), the isotropic
component̃RI(r) contributes the most, followed bỹRb(r), R̃d(r), R̃Q(r), with the contribution
from R̃Q(r) being negligible. The Kolmogorov constantCk calculated froma1 has a value quite
close to2.0. In fact, this is true for the whole channel (Fig. 11), whereCk(y) varies between 1.9 and
2.2. This can be explained from Fig. 12, where{pb, pd, pQ} can be seen to be larger thanpI = 2/3
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for differenty/h locations. The range is given byrǫ < r < rL, whererǫ(y) = (5Ck)

3/4η(y) and
rL(y) = min(y/2, 0.1)

throughout the channel, satisfying the assumption of small-scale isotropy. Also consistent with
this assumption is the fact thatǫij is nearly isotropic.

The power-law exponentspb(y) andpd(y) are nearly constant throughout the channel and could
be approximated aspb(y) ≈ 1.4 andpd(y) ≈ 1 (Fig. 12). The power-law exponentpQ(y) can
be approximated aspQ(y) ≈ 2.0 up to y/h = 0.5 and then it starts to fluctuate near the center
of the channel. This occurs because the contribution fromR̃Q is so small near the center of the
channel that the total error‖RMOD − RDNS‖ is insensitive to large variations inpQ. Qualitatively,
(Fig. 13) the model fits the data quite well for the normal components, when the reference location
(y+ = 114) is in the log layer (Fig. 13). The inclination of principle axes are well represented and
the magnitude of the contour levels match. The main shortcoming of the model lies in its inability
to capture the effect of inhomogeneity, which is most obvious in theRDNS

12 component, where the
isocontours of the DNS extend out further in the positiver2 half of the plane as compared to the
negativer2 half, due to the presence of the wall. The model on the other hand is symmetric inr, and
is not able to capture this aspect of the data. This points to the need for modeling inhomogeneity
in the representation.

3.2.4 Anisotropy due to Inhomogeneity

The results of fitting the homogeneous model to the inhomogeneous correlations from the channel
flow (figure 13), clearly show the shortcomings on the homogeneous model in representing the
cross-correlationR12. Including inhomogeneity introduces significant complexity in the represen-
tation. One approach to this more complex formulation is described briefly below.

The inhomogenous two point correlationRij(x,x′) = 〈ui(x)uj(x
′)〉 depends on two position

vectorsx andx′, and can therefore also be mode to depend on any two linear combinations of
these two position vectors. For instance, we could defineRη

ij(y, r) = 〈ui(x)uj(x
′)〉, wherey =

ηx + (1 − η)x′ andr = x′ − x. Rij satisfies the symmetryRij(x,x′) = Rji(x
′,x). It turns
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has been fixed at2/3 for the whole channel

out that the symmetry has the simplest form forη = 1/2, i.e. for y = (x + x′)/2, we have
R

1/2
ij (y, r) = R

1/2
ji (y,−r). This form for the symmetry is easily satisfied by (for instance) a tensor

that depends ony, is even inr and is symmetric inij.

The representation of〈ui(x)uj(x
′)〉 is therefore best done in the mid-point coordinates (η= 1/2),

because the symmetry conditions are easier to satisfy. From here, the1/2 superscript to denote the
midpoint coordinate will be dropped.

Two-point correlation in the mid-point coordinate isRij(y, r) = 〈ui(y − r/2)uj(y + r/2)〉, and
the two continuity conditions that need to be satisfied are:

∂+
j Rij =

[
1

2

∂

∂yj

+
∂

∂rj

]
Rij = 0 (46)

∂−
i Rij =

[
1

2

∂

∂yi

−
∂

∂ri

]
Rij = 0 (47)

A form that satisties continuity can then be given as follows:

Rij(y, r) = ǫilkǫjmn∂
−
l ∂+

m [Hkn(r, t)a(y)] (48)

wheretij is a tensor that satisfiestkk = 0. The symmetry condition can be easily satisfied by
assumingHij(r, t) = Hji(−r, t). We also implicitly assume thattij does not vary withy. That is,
the relative strengths of the tensor components do not change with location. This is in fact a valid
assumption for the anisotropies of the componentality and dimensionality tensorsbij anddij in the
log layer, where the correlation is self-similar. In this model, the inhomogenieties ofBij andDij

are then being manifested through they dependence ofBii(y) andDii(y) (which are not the same
for inhomogenous turbulence).
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The correlations in the left column were calculated from DNS of channel flow, and the correlation
in the right column from the best fit of the model with DNS. The contour levels for a given corre-
lation component (i.e. for the same row) have the same range.
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Giventij = tji, four invariant forms forHij can be used:

H1
ij(r, t) = f1(r)tij (49)

H2
ij(r, t) = f2(r)δij(r · t · r) (50)

H3
ij(r, t) = f3(r)rirj(r · t · r) (51)

H4
ij(r, t) = f4(r)[ri(r · t)j + rj(r · t)i] (52)

Without any loss in generality, we also assume that the origin ofy is at (x + x′)/2, and model
aα(y) (which multiplies the correspondingHα

ij) as a quadratic function iny, i.e.

aα(y) = cα + λα
kyk + Aα

stysyt (53)

Note that since we are including all inhomogenous effects inaα(y), if cα = βcγ, then it implies
thatλα

k = βλγ
k andAα

st = βAγ
st. That is, any constraints amongstaα(y) will have to hold across

its Taylor series expansion. Therefore, the inhomogenous representation ofRij for a giventij is
given by

Rij(y, r) =
4∑

α=1

ǫilkǫjmn∂
−
l ∂+

m [Hα
kn(r, t)aα(y)] (54)

Expanding∂+ and∂−:

Rij(y, r) =
4∑

α=1

ǫilkǫjmn

[
1

2

∂

∂yl

−
∂

∂rl

] [
1

2

∂

∂ym

+
∂

∂rm

]
[Hα

kn(r, t)aα(y)]

=
4∑

α=1

ǫilkǫjmn

[
1

4

∂

∂yl

∂

∂ym

+

1

2

{
∂

∂rm

∂

∂yl

−
∂

∂rl

∂

∂ym

}
+

∂

∂rl

∂

∂rm

]
[Hα

kn(r, t)aα(y)] (55)

Rij(0, r) can therefore be written as a sum of 3 terms:

Rij(0, r) = RH
ij (r)︸ ︷︷ ︸

Homogeneous

+ RA
ij(r)︸ ︷︷ ︸

Antisym Inhomog.

+ RS
ij(r)︸ ︷︷ ︸

Sym Inhomog.

(56)
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where

RH
ij (r) =

4∑

α=1

ǫilkǫjmn
∂

∂rl

∂

∂rm

Hα
kn(r, t)aα(0)

=
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cαǫilkǫjmn
∂

∂rl

∂

∂rm

Hα
kn(r, t) =

4∑

α=1

RH,α
ij (r)
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ij(r) =
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ǫilkǫjmn
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∂
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−
∂

∂rl

∂
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] ∣∣∣
y=0

=
4∑

α=1
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4∑

α=1

RA,α
ij (r)
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ij(r) =

4∑
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ǫilkǫjmn
1

4

[
∂

∂yl

∂

∂ym

Hα
kn(r, t)aα(y)

] ∣∣∣
y=0

=
4∑

α=1

ǫilkǫjmn
1

4
Aα

lmHα
kn(r, t) =

4∑

α=1

RS,α
ij (r)

Here,RH,α
ij are homogenous tensors, symmetric inr andij, RA,α

ij arises from the inhomogeniety
(it hasλα

i in every term, arising out of first derivative ofaα(y)), is antisymmetric inr andij and
RS,α

ij also arises from the inhomogeniety (due toAα
ij) and is symmetric inr andij.

If all RH,α
ij (r) have the same power law (i.e.f1 = rp, f2 = rp−2, f3 = rp−4 andf4 = rp−2),

then it can be shown that{RH,α} are linearly dependent, and spanned by 2 tensors. However, it
can also be shown thatall four tensors in {RS,α} will remain linearly independent. Therefore,
while satisfying the self-consistency condition, we can independently apply constraints forRH,α

ij

andRS,α
ij , even though they are both even functions inr.

This representation was used to fit channel flow from the DNS atReτ = 940 and the results for
the normal components of the correlation tensor are the same. However, the antisymmetric part
breaks the symmetry of theR12 component as shown in figure 14. This is an improvement over
the results shown in figure 13, especially for small separations.

3.3 Generalization and Testing of Finite-Volume Wall-Bounded OLES

The application of OLES to general wall-bounded flows requires a synthesis of the wall-bounded
OLES modeling pursued previously using spectral representations [39, 5] and the finite-volume
formulation developed and evaluated for non-wall-bounded flows (see section 3.1 and [42, 26]).
There were a number of unanticipated complications in this generalization of optimal LES, the two
most important of which will be discussed here. These have been investigated in the context of
statistical data obtained from direct numerical simulation of channel flow atReτ = 940 [12].
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Figure 14: Isocontours ofRDNS
ij (y, r) (DNS) andRij(y, r) (Model) aty+ = 114, plotted forrz = 0.

The correlations on the left were calculated from DNS of channel flow, and the correlation in the
right column from the best fit of the model with DNS. The contour levels have the same range.

3.3.1 The Spanwise Flux of Mean Momentum

As with the finite volume formulation described in section 3.1, in wall-bounded flows, the con-
vective flux of momentum through the faces of the finite volumes is estimated using the sum
of a quandratic and linear terms, where the linear term is expected to represent the transfer of
energy to the unresolved scales. Using DNS statistical data, anisotropic OLES optimal models
were developed on minimally sized stencils (1× 1× 2) for simplicty. In this inhomogeneous flow,
the quadratic terms include the production of turbulent kinetic energy through interaction with the
mean, in addition to the nonlinear turbulent cascade process. As a result, the quadratic term is a
net producer of kinetic energy through much of the simulation domain. However, it was observed
that the quadratic term slightly underestimated the rate of production in the central region of the
channel. The model is guarenteed to correctly represent the energy transfers (a priori) so the linear
term must make up for the missing production by being slightly anti-dissipative near the channel
centerline. This is demonstrated in figure 15. The result when this model is used in an LES is an
unstable simulation.

Further investigation of this phenomenon identified an unlikely culprit, the spanwise flux of mean
streamwise momentumUw′ (U is the mean velocity andw′ is the fluctuating spanwise veloc-
ity) that appears in the equation for streamwise velocity fluctuationsu′. This is counter-intuitive
because this term cancels out of the equation for〈u′2〉. However, the OLES models ensure correct
a priori values of many statistical quantities, including those involving this spanwise flux. In par-
ticular, the contribution of the quadratic term to the spanwise fluxUw′ was underpredicted by the
model and the linear term had to make up the difference. However, the form of the linear term,
which involved only streamwise velocities was incompatible with the actual termUw′, which is
linear in the (fluctuating) spanwise velocity. To correct this shortcoming, the model was general-
ized to include a linear inw′ term in them streamise momentum equations, and this resulted in a
stable simulation. The near-wall velocity variances from this simulation are shown in figure 16.
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Figure 17: Contribution of the convection, viscous and pressure terms to the evolution of the
filtered velocity variances as determined from the filtered DNS and optimal LES model.

3.3.2 Near-wall Pressure Contributions

The obvious shortcoming of the LES results shown in figure 16 is that the streamwise fluctuations
are over-predicted compared to the filtered DNS, and the other velocity fluctuation components are
somewhat underpredicted. A likely source of this discrepency is shown in figure 17 in which the
agregated terms in the evolution equations for〈u′2〉 and〈v′2〉 are shown. Notice that the primary
discrepency between the LES model terms and the DNS terms is in the pressure contribution, which
is responsible for the transfer of energy from the streamwise to the other velocity components.

In this OLES model formulation, the pressure is determined by imposing a discrete divergence
free-constraint on the volume averaged velocities, as in a standard staggered grid finite volume
scheme. This is a modeling ansatz is based on the observations of [20] that in finite volume LES
of isotropic turbulence this is very nearly the the optimal model. The presence of the wall appears
to be upsetting that conclusion. There are several ways to interpret the discrepency in the pressure
term. The most useful is to observe that the magnitude of the discrete divergence of the convective
term is greatly underestimated by the model relative to the filtered DNS (figure 18), resulting in a
lower pressure contribution. This is a property of the convective terms that the OLES formulation
does not control for. The proposed solution to this problem is to reformulate the OLES model to
estimate the (discrete) divergence-free projection of the convection term. This proposal is currently
being evaluated.

3.4 Conclusions

3.4.1 Theory-based Finite-Volume OLES

The correlations required for the finite-volume OLES formulation can be obtained from Kol-
mogorov inertial-range theory, small-scale isotropy, and the quasi-normal approximation. Further,
LES models resulting from these correlations perform well. These approximations will be valid
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provided the turbulence at the filter scale and smaller is locally homogeneous and isotropic. Except
for very near walls and other strong inhomogeneities, this is expected to be a good approximation
provided the Reynolds number is sufficiently high and the filter width is sufficiently small.

The finite-volume OLES models developed here are expressed as discrete quadratic and linear
operators that represent the convective momentum flux. These operators depend explicitly on
two flow dependent parameters: the dissipation rateǫ and the nondimensional parameterγ =
∆ǫ/u3 (the ratio of the grid size∆ to the large turbulence scale). The modeling approach allows
the parametersǫ andu2 to be determined dynamically and accurately in a running LES. But it
was also found that asymptotic operators forγ → 0 yield results consistent with the finiteγ
operators withγ as large as 0.08. In most cases, therefore, the asymptotic operators are sufficiently
accurate, meaning that onlyǫ needs be determined dynamically. The process for determiningǫ is
considerably simpler than the usual dynamic procedure [13], as no test filter is required.

The quadratic and linear operators arising from the LES optimization are broadly similar to com-
mon finite-volume operators. However, there are significant quantitative differences between the
OLES operators and standard finite-volume operators, which should be interpreted as part of the
model for the effects of subgrid scales. The linear part of the operators, which play the role of
the subgrid stress model by dissipating resolved energy, are different for the normal and tangential
velocity components in any grid direction, with the tangential component dissipation significantly
lower at high wavenumbers than a standard fourth-order approximation to the second derivative.
This is one of the features of the OLES approach; the spectral distribution of subgrid dissipation
is tailored to be consistent with the statistics of turbulence. Finally, note that the quadratic OLES
operators on average produce resolved-scale energy and the linear operators dissipate energy. The
dissipation of the linear term is determined to ensure that the combined contributions of quadratic
and linear terms to the resolved energy evolution match the required total dissipation.

These results indicate that practical finite-volume OLES models can be formulated without DNS
correlation inputs, at least for the circumstances for which most LES models are designed (small-
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scale isotropy). The advantage of the current formulation isthat it allows the effects of subgrid
turbulence and numerical discretization to be treated in a unified way and consistent with the statis-
tical properties of turbulence. It is both remarkable and encouraging that the simple considerations
employed here are sufficient for this modeling.

Several immediate generalizations are possible using the isotropic statistical models introduced
here. These include LES of scalar transport and modeling on anisotropic and inhomogeneous grids,
as one would encounter in most applications. Also important is the generalization to anisotropic
correlations for LES models applicable when isotropy at the grid scale is not a valid assumption.
This occurs, for example, in near-wall turbulence. Isotropy places a strong constraint on the form
of the multi-point correlations. Without isotropy, even the two-point second-order correlation is
difficult to represent (see [6] and the references therein). The possibility raised in section 3.1.6
that theI3 contribution to the OLES estimation equations might be neglected or crudely modeled
is thus particularly important, since the underlying three-point third-order correlation is the most
difficult to model. However, the robustness of this result to anisotropy and inhomogeneity of the
turbulence and the LES grid is far from clear.

3.4.2 Modeling Anisotropy of Two-point Correlations

The results show that the homogeneous model fits the correlations calculated from DNS data rather
well, both quantitatively and qualitatively, though there are shortcomings to the fit, arising from
limitations of the model. In particular, to improve the representation of the small separation cor-
relations discussed here for flows that are inhomogeneous, the effects of the inhomogeneity on
the correlation needs to be represented, particularly the breaking of the symmetry expressed as
Rij(r) = Rij(−r). A preliminary inhomogeneous formulation was proposed and tested, with
encouraging results.

The primary advantage of models of the type developed here for the small separation correlation is
that they have a finite number of parameters (17 including the power-law exponents for the homo-
geneous model). If we neglect the part of the correlation depending onQ∗

ijk (which accounts for
< 5% of the correlation), then our model can be expressed in terms of just 9 free parameters. A
similar SO(3) (up tol = 2) decomposition forRij(r) that has even parity inr, is symmetric inij
and satisfies the homogenous continuity equation will have 8 free parameters [2] (after fixing the
isotropic power law) – thus, the number of DOFs in our model is comparable to that of the simplest
possible anisotropic SO(3) representation. At any rate, a finite number of measurements of the cor-
relation will be sufficient to parametrize our model, effectively reconstructing the correlation from
a small amount of data. This is useful in interpreting experimental data, but perhaps more impor-
tant, it is useful for reconstructing the turbulence correlations from correlations computed from a
large eddy simulation. Applying the LES filter to the correlation model yields a representation of
the correlation of the LES velocities, which can be fit to the LES data similar to the fits to DNS
performed in this paper. The parameters so determined, when applied to the unfiltered correlation
representation, define the turbulence correlation consistent with the correlations of the LES fields.

Seventeen is a large number of parameters, which raises the questions as to how practical it might
be to parametrize such a model using LES (or experimental) data. However, this is a second
rank correlation tensor. Correlations for just two non-zero values ofr yield 18 data items. If the
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correlation (or the filtered correlation) is sampled on a rectangular grid (e.g. an LES grid), with
nearest neighbor separations (7 points total) that would amount to 33 data items (accounting for
symmetries), and sampling on a cubical grid of 27 separations yields 123 independent data items.
Clearly, data from a reasonable number of small separations should be sufficient to parametrize the
model. An effort to extractRij in this manner from LES statistics was undertaken by Bhattacharya
[4], where encouraging results were obtained for extracting the normal Reynolds stress components
Bαα from LES correlations.

While the results described above are encouraging for the representation of anisotropy in the two-
point second-order velocity correlation, the optimal LES formulation also needs a model for the
three-point third-order correlation. The complexity of such a model will be much greater than for
the two-point correlation discussed here, so much so that this approach to anisotropy representation
of the correlations underlying the LES formulation now appear impractical. The current results for
the two-point correlation will be useful for reconstructing second order statistics from LES fields,
but another approach to representing the anisotropy in optimal LES models appears to be needed.

A much more direct and simplier approach is currently being pursued. It is based on the modeling
ansatz that the anisotropy of the interaction between rsolved and unresolved scales can be char-
acterized by anisotropy in the dissipation inferred from an LES using the techniques described in
[26]. This approach is currently being evaluated for its effectiveness.

3.4.3 Finite Volume Wall-bounded OLES

The execution of finite volume OLES for wall-bounded turbulence encountered several unantic-
ipated roadblocks, which have been or are being overcome. As with previous development of
OLES models, the resolution of the problems encountered was facilitated by the formal structure
of the modeling approach, which provides a theoretical framework in which the expectations for
the statistical properties of the model are analyzed. The analysis also provides insight with poten-
tial application for wall-bounded LES in general. In particular, one of the common shortcomings
of wall-bounded LES, especially with unresolved wall layers, is the over prediction of streamwise
velocity fluctuations, just as observed here. It may be that this shortcoming is commonly related
to inadequacies in the treatment of pressure and the continuity constraint, as is the case here.
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[40] T. von Kármán and L. Howarth. On the statistical theory of isotropic turbulence.Proc. R.
Soc. London A, 164:192, 1938.

[41] M. Wang and P. Moin. Dynamic wall modeling for large-eddy simulation of complex turbu-
lent flows.Physics of Fluids, 14:2043–2051, 2002.

[42] P.S. Zandonade, J.A. Langford, and R.D. Moser. Finite volume optimal large-eddy simulation
of isotropic turbulence.Physics of Fluids, 16:2255–2271, 2004.

37


